

3 December 2014

Energy Transition: A Multifaceted Challenge for Europe High Level Conference

The 2030 Energy & Climate Package for the EU: the challenges that lie ahead

The 2030 challenge for Europe's power system

- Europe's electricity system will be at the forefront of delivering the EU's 2030 energy and climate objectives
- Decarbonising Europe's power system will require integrating unprecedented levels of renewable energy into the system

THIS WILL REQUIRE NEW...

HARDWARE

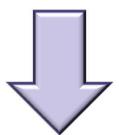
Upgrading existing transmission lines and building new ones

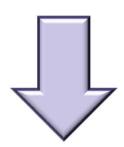
SOFTWARE

Harmonised rules and regulations through Network Codes and a fitfor-purpose market design

TRANSMISSION INFRASTRUCTURE

INTERCONNECTIONS AND UPGRADED
POWER LINES FOR A PAN-EUROPEAN LOWCARBON ELECTRICITY SYSTEM




The importance of transmission infrastructure

Primary forms of RES-E such as wind and solar power are often variable and less predictable in their output than conventional power plants

RES-E will be increasingly be generated far from consumption centres

Need to balance the grid and optimise resources by connecting areas with surplus energy to those with a deficit

Need to bring energy to final consumers across greater distances

Requires building new interconnectors and upgrading and reinforcing existing transmission infrastructure

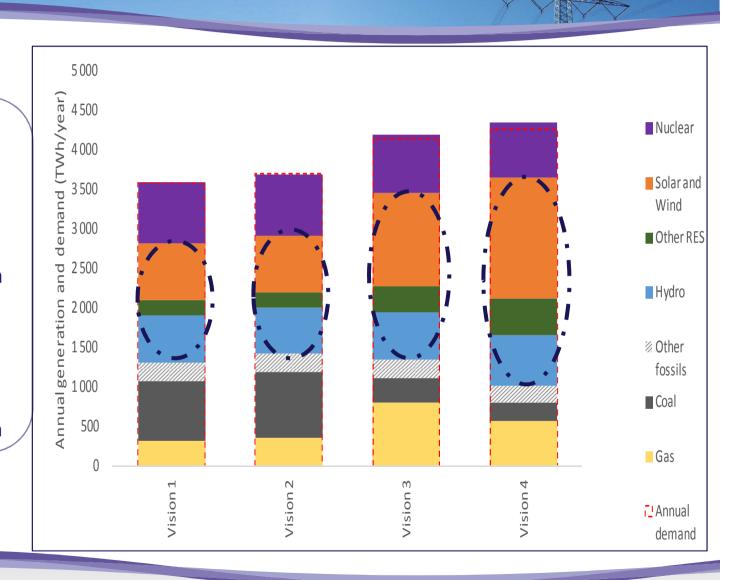
The Ten Year Network Development Plan – a key tool to deliver the necessary infrastructure

Transparent on the future pan-European grid infrastructure

Consistent
CBA
assessment
of projects

TYNDP= THE 2030 plan Delivers the target capacities and transmission adequacy

Identifies the challenges in building the necessary infrastructure



Renewable energy goals driving European grid development

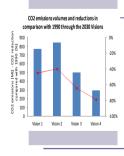
From 197 GW up to 876 GW of installed renewable capacity in 2030

Up to 60% of total energy consumption in 2030 covered by renewables

80% of the pan-EU projects contribute to renewables integration

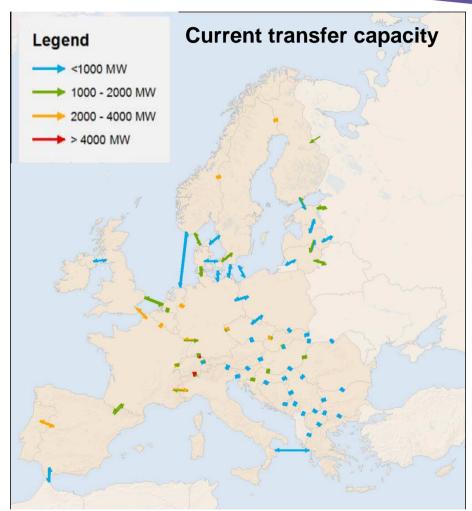
TYNDP 2014 main findings

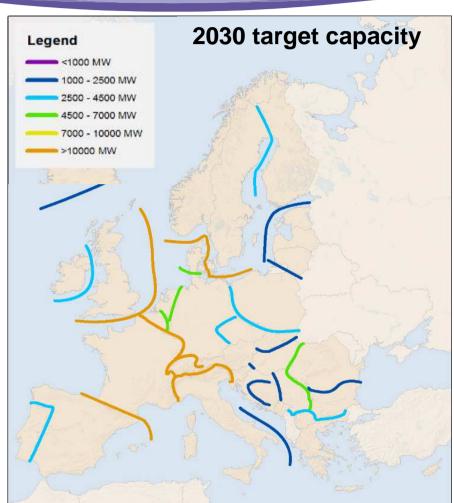
Up to €150 billion for projects of pan-EU significance by 2030 (1-1.5 €/MWh, about 1% of bill)


Reduction of 2 to 5 €/MWh for bulk power prices by 2030

Up to 50,000 km of new or refurbished grid investments (23.000km new overhead lines)

Optimised land use: the crossed urbanised areas account for less than 4% of the total km of lines


Mitigation of 20% of CO2 emissions for the European power sector



Accommodating up to 60% RES of total consumption in 2030

Doubling the interconnection capacity by 2030

NETWORK CODES

HARMONISED TECHNICAL RULES AND MARKET ARRANGEMENTS ENABLING THE TRANSITION TO A LOW-CARBON ELECTRICITY SYSTEM

What is a network code?

A set of rules addressing one aspect of the electricity system

Which are developed by ACER, ENTSO-E & market participants

And become legally binding after the Comitology process

Hence they will have the same status as any other Regulation

Three sets of codes to deliver the IEM and low-carbon future electricity system

Grid Connection Related Codes

- Requirements for Generators (RfG)
- Demand Connection Code
- HVDC Connection Code

(DCC)

(HVDC)

System Operation Related Codes

- Operational Security (OS)
- Operational Planning & Scheduling (OPS)
- Load Frequency Control & Reserves (LFCR)
- Emergency & Restoration (ER)

Market Related Codes

Capacity Allocation & Congestion Management

(CACM)

Forward Capacity Allocation

(FCA)

Balancing Network Code

(EB)

All Network Codes to help integrate RES-E

In addition to helping complete the IEM, all Network Codes are intended to play a role in facilitating the integration of RES-E.

Requirements for Generators

Defines what ancillary services generators should be capable of delivering Demand Connection

Facilitate uptake of Demand Side Response

HVDC

Paves the way for a European 'supergrid' Capacity
Allocation &
Congestion
Management

Forward Capacity Allocation

Harmonised rules to establish the IEM and enable market entry of new RES-E producers of all sizes

Operational Security

Ensure secure integration of RES-E by enhancing coordination between all network operators

Load Frequency Control & Reserves

Emergency & Restoration

Frequency control management for high RES-E penetration

Operational Planning & Scheduling

Higher RES-E penetration through enhanced forecasting arrangements

Electricity Balancing

Optimised balancing markets for high-RES-E penetration

MARKET DESIGN

DESIGNING MARKETS FOR AN INTEGRATED PAN EUROPEAN LOW-CARBON ELECTRICITY SYSTEM

Good progress on moving towards the Target Model through successful market coupling and Network Codes

Day-ahead Multi-Regional Coupling Project (MRC)

- NWE went live on February 4, 2014. SWE coupled with NWE on May 13th, 2014 (NWE-SWE now called MRC).
- Electricity can thus be exchanged from Portugal to Finland or Great Britain to Germany under a common day-ahead price calculation
- MRC has proven to be operationally robust

Nearing adoption of CACM Regulation

- Will help achieve the IEM through a harmonised approach to cross-border electricity trading
- Also sets out rules for congestion management optimising the use of transmission capacity

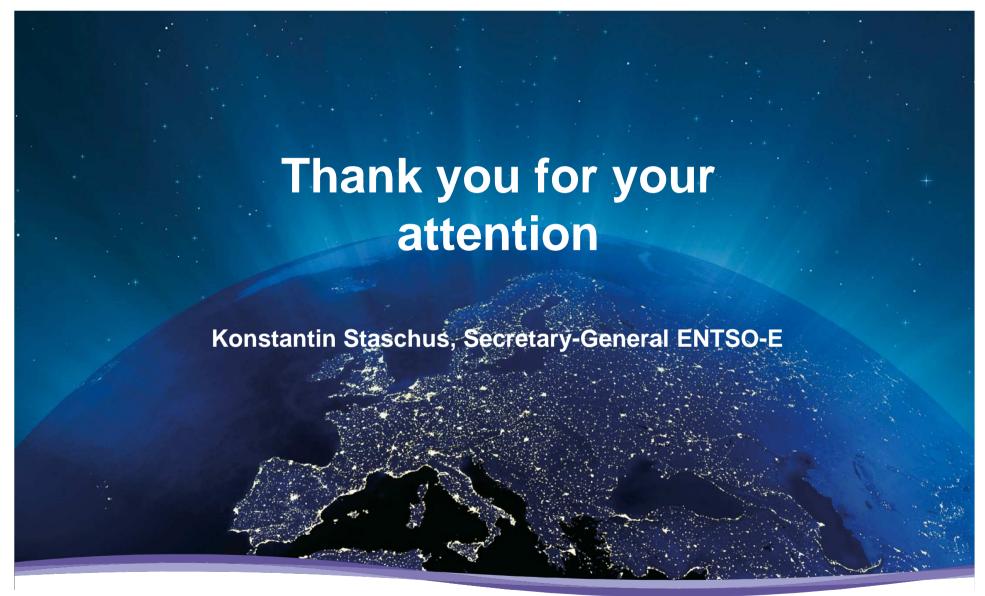
Good progress on Electricity Balancing and Forward Capacity Allocation NCs

EXPANSION OF MRC		
	NWE, Baltic	Feb 2014
	Austria, Poland	Partial solution Feb 2014
	SWE	May 2014
	Italian Borders	Feb 2015
	4M	Nov 2014

Enhancing the Target Model with additional features to enable RES-E integration

1. Target Model fully implemented ASAP


Balancing prices should be reflective of full system costs


2. Current market design to be improved

All RES should be fully integrated into the market

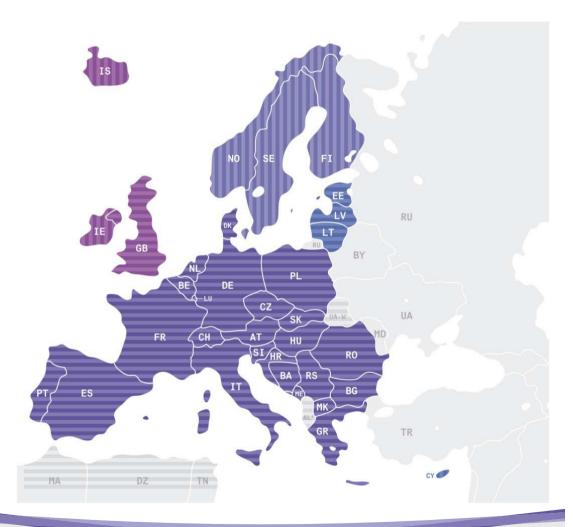
3. Technical system scarcities to be objectively assessed by ENTSO-E's adequacy assessment

Demand Side should participate as much as possible in all markets

3 December 2014

Energy Transition: A Multifaceted Challenge for Europe

High Level Conference


The 2030 Energy & Climate Package for the EU: the challenges that lie ahead

Backup: Introducing ENTSO-E

European Network for Transmission System Operators for Electricity

- 41 TSOs from 34 countries
- A trans-European network
- 532 million citizens served
- 1,004,062 MW net generation capacity
- 307,503 Km of transmission lines
- 3,307 TWh/year consumption
- 387,251 GWh of electricity exchanges between member
 TSOs
- Legal mandate Reg. (EC)714/2009

Backup: ENTSO-E in Regulation (EC) 714/2009

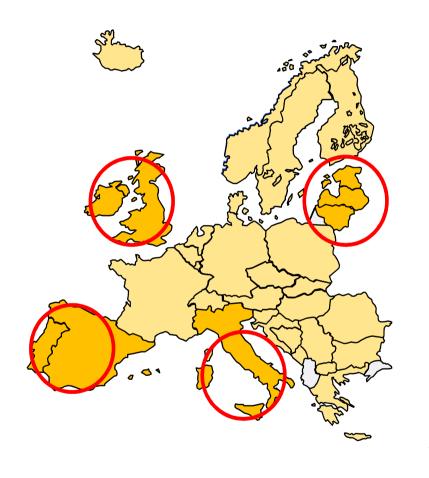
Article 4: ENTSO-E

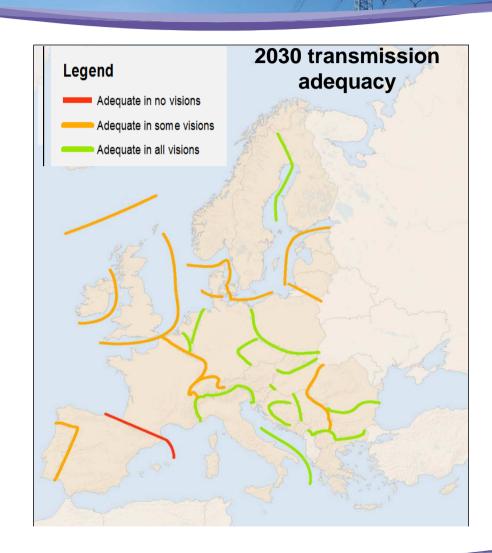
Completion of Integrated Energy Market

Article 6: Establishment of network codes

- In line with Framework Guidelines (by ERGEG/ACER)
- Legally binding through Comitology
- Effective & transparent access to the transmission network
- Transparent extensive consultation process

Article 7: Issues addressed by network codes


 Cross border network issues and market integration issues without prejudice to the Member States' right to establish national network codes


Article 8: Tasks of ENTSO-E

- Network codes; TYNDP, incl. a European generation adequacy outlook
- Work programme, annual report, summer/winter outlooks, monitoring

Backup: Integrating the four "electric peninsulas"

Backup: Challenges to implementing infrastructure on time

Permit granting

- Procedures are lengthy and often cause commissioning delay
- 30% of investments delayed after 2 years

Public acceptance

 More effort to bring citizens and interest groups on-board and increase understanding of Europe's energy needs

Financing

- A stable regulation for long-term investments
- Tariffs must adapt to energy transition goals

Backup: Why Demand Side Response (DSR)?

- 1. DSR is a key component in the successful evolution of the power system, enables EU 2030 and 2050 energy policy and decarbonisation targets.
- 2. DSR creates value for consumers and society at large.
- 3. DSR provides TSOs with flexibility to maintain security of supply, optimise utilisation of the infrastructure and grid investments, and it supports system adequacy.
- 4. DSR enhances competition and improves the target market model by providing a strong additional alternative to a system where each new demand needs new generation.

ENTSO-E to play a leading role in the transition to 2030

To help achieve the EU's 2030 energy and climate policy objectives ENTSO-E will continue working closely with all stakeholders to deliver:

- > The infrastructure through the TYNDP
- ➤ Implement Network Codes and continue developing them in the long-term
- ➤ Fit-for-purpose market design by advising stakeholders and decision-makers

