

LESSONS LEARNED FROM THE PREVIOUS EU ETS PERIODS

08/09/2015 Egmont, Brussels

Pavel ŘEŽÁBEK Chief Economist, ČEZ

AGENDA

Three lessons for the EU ETS

Is the current reform a sufficient answer to these lessons?

LESSON 1: POWER SECTOR IS QUITE SENSIBLE TO THE MARKET SIGNALS IT GETS

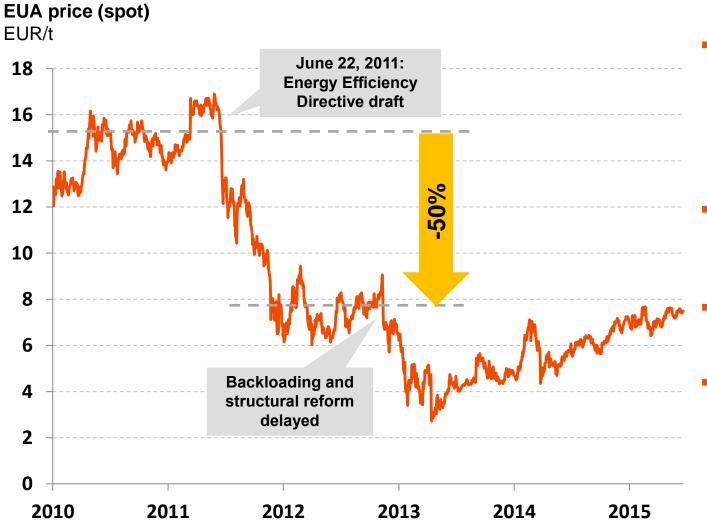
Gas plants comissioned after 2005

E.ON, RWE, Statkraft, Vattenfall, EnBW, GDF Suez, Centrica, SSE, Verbund, CEZ

- Expectations of high carbon prices led the European utilities to invest into low emission sources
- ČEZ also commissioned its CCGT project in 2013
- Moreover, some coal plants' retrofits were realized in order to decrease the CO2 intensity of the production

LESSON 2: DYSFUNCTIONAL REGULATION IS MORE EXPENSIVE THAN NO REGULATION

Less than 10years old CCGT plants mothballed in 2012-2013


E.ON, RWE, Statkraft, Vattenfall, EnBW, GDF Suez, Centrica, SSE, Verbund, CEZ

- Brand new CCGT plants are being mothballed almost everywhere in the CWE (at least 10GW with investment costs of more than 8bln EUR!)
- European potential to decarbonize is not being used
- Emissions decrease because of weak economy and RES support, and not because of economic incentives to generate in clean sources
- Today, it is far more profitable to generate in CO2-intensive lignite and hard coal sources

LESSON 3: OVERLAPPING CLIMATE POLICIES HAVE A SIGNIFICANT IMPACT ON THE EU ETS

- Complementary climate targets (renewables, energy efficiency) cannot be reached only with the EU ETS, they need their specific tools
- However, collateral effects of these tools can significantly weaken the EU ETS
- Indeed, they were one of the causes of the EU ETS collapse
- In a case of weak economic growth, they could even bring all the necessary CO2 savings without any contribution of the EU ETS

AGENDA

Three lessons for the EU ETS

Is the current reform a sufficient answer to these lessons?

EU ETS OVERLAP WITH OTHER EUROPEAN CLIMATE POLICIES SHOULD BE MITIGATED TO AVOID THE STRUCTURAL OVERSUPPLY

Annual dynamics of EUA supply and RES&EE effects after 2020 Mt

Annual decrease of EU ETS supply because of the 2,2% linear reduction factor

-48

BAU emission growth

31

To be saved

CO2 savings due to 27% (power: 47%) RES target

-41

CO2 savings due to Energy efficiency target

-39

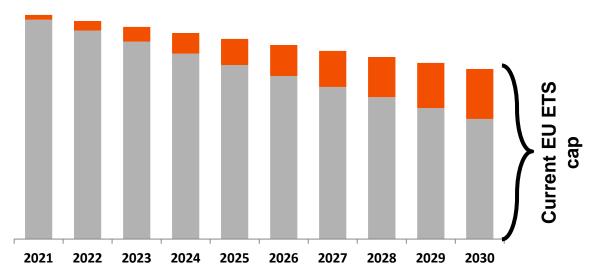
Saved by other 2030 targets

Result: the least cost operations (by accident, often the dirtiest ones) will go on

MESSAGE? NO ACTION NEEDED!

MITIGATION: DECREASE THE ANNUAL EU ETS CAP BY THE EMISSIONS SAVED DUE TO THE RES SUPPORT IN THE PREVIOUS YEAR

EU ETS cap adjustment



RESproduction in
previous year

Average emission factor of conventional generation in previous year

EU ETS cap based on the linear reduction factor and effect of the RES support (illustrative)

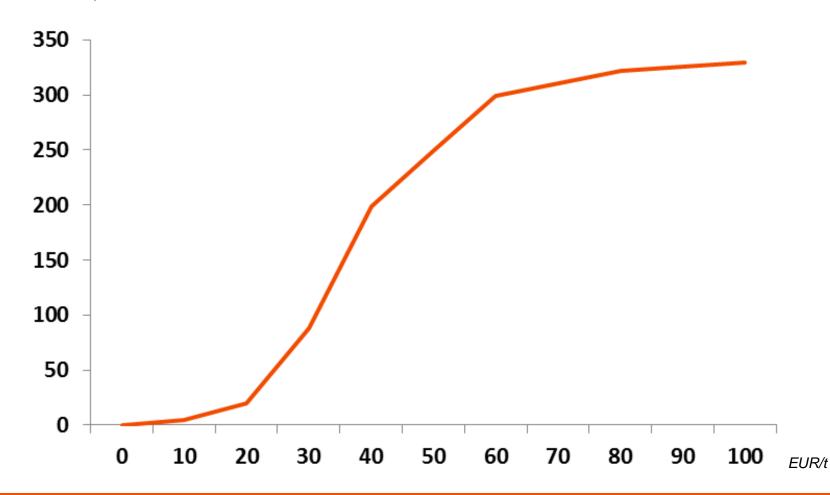
- Decarbonization achieved by RES support
- **■** Decarbonization left to EU ETS

- Non-market RES generation is withdrawn from the EU ETS
- Every year, EUA auctions are automatically decreased by the emission volumes saved by RES generation in previous year
- Adjustment separates emission savings realized thanks to the RES support and emission savings to be achieved via EU ETS

 EU ETS is more stable and predictable as it does not depend on external, non-market tools

CONCLUSION

- Power sector proved to have a high potential to decarbonize provided it has a stable and robust market signals
- EU ETS overlaps with other European climate policies threaten the future stability of the system
- MSR cannot mitigate the effect of a long term, structural oversupply
- EU ETS stability and predictability in the future can be improved by withdrawing savings achieved thanks to other climate policy tools from the system


BACKUP

COAL-TO-GAS SWITCHING AND RELATED EMISSION SAVINGS START AT EUA PRICE LEVELS BETWEEN 20-30 EUR/T

CO2 savings in the energy sector as a function of price Mt, 2021

MSR MAKES THE SYSTEM ROBUST AGAINST TEMPORARY SURPLUS, BUT IT DOES NOT SOLVE A STRUCTURAL OVERSUPPLY

Illustrative EU ETS scenario Mt, EUR/t

	Year 0	Year 1	Year 2+
SUPPLY	1 000		
DEMAND	1 100	Market in equilibrium:	
SURPLUS	750	required hedging volumes	
MSR	0		
SAVINGS	100	Additional savings needed	
PRICE	25	⇒ positive price	

 Y0: Excess of demand over supply requires additional emission savings and therefore a positive EUA price

Market surplus within pre-defined band, no need for the MSR to intervene

MSR MAKES THE SYSTEM ROBUST AGAINST TEMPORARY SURPLUS, BUT IT DOES NOT SOLVE A STRUCTURAL OVERSUPPLY

Illustrative EU ETS scenario Mt, EUR/t

				V(): V(000
	Year 0	Year 1	Year 2+	• YU: Exces
SUPPLY	1 000	1 000	RES support	additional savings a
DEMAND	1 100	1 000	causes permanent	positive E Y1: RES
SURPLUS	750	750	decrease of demand	decreases
MSR	0	0	301113113	is in equil additional
SAVINGS	100	(0)		needed
PRICE	25	(0)	No addit savings nee	

- Market surplus still within pre-defined band, no need for the MSR to intervene
- Market in equilibrium without any price incentives

Y0: Excess of demand ply requires al emission and therefore a EUA price

support es the EUA down, market ilibrium and no al savings are

no price incentive

MSR MAKES THE SYSTEM ROBUST AGAINST TEMPORARY SURPLUS, BUT IT DOES NOT SOLVE A STRUCTURAL OVERSUPPLY

Illustrative EU ETS scenario Mt, EUR/t

	Year 0	Year 1	Year 2+
SUPPLY		rket in new long rm equilibrium	1 000
DEMAND	1 100	1 ()()() Surplus in	1 000
SURPLUS	750	pre-defined band, MSR do	, ,
MSR	0	not intervene	
SAVINGS	100	No additional savings needed =	0
PRICE	25	no price incentive	

- Y0: Excess of demand over supply requires additional emission savings and therefore a positive EUA price
- Y1: RES support decreases the EUA demand down, market is in equilibrium and no additional savings are needed
- Y2+: market is in a new equilibrium, no need for additional savings and therefore no price
- MSR maintains the market in the equlibrium defined by the surplus band
- However, MSR cannot create any need for additional CO2 savings
- There is no EUA price without any demand for savings
- No incentive for long term decarbonization investments